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This paper proposes a multiresolution procedure adapted to triangular cell-averages
to improve the performance of finite volume schemes by reducing flux evaluation
cost, using the approach introduced by A. Harten. A specific coarse-to-fine predic-
tion scheme is proposed that ensures the stability of the computations, even when a
large number of scales are involved. Numerical tests are presented that illustrate the
computational gain as well as the order of accuracy of the scheg®@oo Academic Press
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1. INTRODUCTION

Multiscale methods are a powerful tool in mathematical analysis and applications sucl
signal processing and numerical simulation. The theoretical background underlying th
methods has been substantially reinforced since the emergence of wavelet theory ir
1980s.

One of the particular interests of multiscale discretizations into wavelet bases is t
by a simple thresholding of its coefficients in such a basis, a function is automatica
represented by a coarse scale discretization, together with some additional details at
scales which are only needed near the singularity of the function. This is directly usec
signal processing for data compression purposes. In the area of humerical simulation,
suggests that multiscale methods can be used to approximate the solution of a phy
problem at a low memory and computational cost, if it is smooth except at some isola
singularities.

Note that the first applications of multilevel techniques in numerical simulation had
different objective: in the context of elliptic problems, multigrid methods were develope
since the 1970s for the purpose of preconditioning rather than compression (see [6, 8
a general survey of multiscale and wavelet methods in numerical analysis).
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In the context of hyperbolic equations or systems of conservation law, the introduct
of multiresolution methods is mostly due to A. Harten [13] and is somehow more clos
related to the idea of compression. In particular, such equations are known to deve
discontinuities, so that one can think of exploiting a multiscale structure to concentr
the fine grid computations mostly near the edges. This appears as a simple alternati
adaptive or moving grid techniques which are difficult to operate, especially in several sp
dimensions.

Let us explain in a nutshell the strategy proposed by Harten. At the start one is give
finite volume scheme associated to a fine m@5tof resolution say 2" for approximating
the solution of a conservation law. At tinme\t the approximate solution is represented by
its averagesuy)keqr ON the various cells oR2“. The valueguy " Yyeqt are evolved from
the previous one through the evaluation of the flux at the interfaces between each cells.
idea is then to use a wavelet-like multiscale decomposition of the solution ahtasea
smoothness indicatan order to reduce the computation of the flux: in the regions wher
the details above some scélg L are small (i.e., below some preassigned threshold), tf
flux is assumed to be smooth enough so that we can replace its exact evaluation b
interpolation from its values on the mesh.

At this point, we can make two remarks:

e The accuracy of this scheme is intrinsically limited by the finite volume schen
at the finest resolution2: the idea isnot to improve the accuraclut rather togain
computational timevhile keeping the same order of accuracy.

o While the flux is computed adaptively, the evolution of the solution at each tin
step still takes place on the finest g&at which limits the potential computational gain,
even when most details are considered as negligible.

Therefore, a first important trend is the development of fully adaptive multiresolutic
schemes for which the complexity is not tried to the finest grid. The main difficulty is 1
obtain an accurate computation of the flux in the coarse regions without the help of the
cells. Some strategies to solve this problem have recently been proposed in [7, 12].

Another remark is that the effectiveness of Harten’s scheme is related to the ability
the multiscale representation tompresghe solution: typically (see [13]) an additional
truncationerror occurs, which corresponds to discarding the details below the threshc
While this error should remain of the same order as the standard error of the finite volu
scheme, the computational gain on the flux evaluation is reflected by the proportior
details which are above the threshold. This is even more true in the perspective of a f
adaptive scheme, where this proportion should reflect the overall computational gain.

For this, itis crucial that the reconstruction operators linking cell-averages from coars
fine scales have both certain polynomial exactness properties (ensuring that details are :
in the smooth regions) and stability properties (ensuring that we can control the perturba
of the solution resulting from thresholding the small details). These requirements are ea:
fulfillin the context of uniform one dimensional or tensor product grids as considered in [3,
17], in which case the multiresolution is a particular instance of biorthogonal wavelet bas

However, they are much more uncertain on unstructured or triangular meshes, whick
certainly the most commonly used, although some ad hoc constructions are available
[1, 2, 16]) which are not proved to be stable in the above sense. Note that similar difficull
arise for proving stability in the setting of a curvilinear grid obtained from tensor produ
grids by parametric maps which is addressed in [9] through the concstptdé completion



266 COHEN ET AL.

Therefore, a second important trend is the derivation of stable multilevel finite volur
schemes in the context of triangular discretizations.

The present paperis concerned with this second trend. We shall develop Harten’s appr
on triangular discretizations, using a specific algorithm for which we prove stability (|
the setting of uniform triangulations). In Section 2, we present the multiscale transfo
algorithm. This transform is used in Section 3 to build a humerical scheme for sca
equations of the type

otu + div(f(u)) =0, (1)

for t [0, T] and x = (x, y) € 2 C R?. Let us mention that the scheme can be extende
in a straightforward way to the treatment of systems. Some numerical tests that show
efficiency of our scheme are presented in Section 4. The proof of the stability property of
multiscale reconstruction is done in Appendix 1. It relies on techniques used in compt
aided geometric design to study the asymptotic behaviour of iterative surface refinen
algorithms. Some details on the underlying finite volume scheme are given in Appendi

Our next perspective will be to combine the two trends, i.e., to use the multiresoluti
tools developed in the present paper within a fully adaptive scheme.

2. MULTISCALE TRANSFORM

We shall describe in this section multiscale transform adapted to cell-averages on tr
gles, for which we shall prove stability.

In the context of Harten’s framework we build a hierarchy of nested gfidgor
| =0,...,L. The grids' are generated from the coarse grid triangulafdrby iterative
decompositions of its triangles. One triangle is divided into four triangles by connectil
the midpoints of its three edges. The number of triangles on thesris denoted byN'
(N'=4'N°) and a generic triangle &' by Ty for 1 <k < N'. We denote by T; andT’, ;
the boundary offy and the common edge @ andT/, so thatd Ty = [J; T ;. The area
of Til and the length of’y ; are denoted bka'| and|I'y j|. We denote by andny ; the
outward normal o T, and its restriction to the edge ;. The centroid of the triangle
T, has coordinates| = (1/|T, |)ka| xdxdy yi = (1/|T} |)ka| y dx dy We also refer to the
mean operatarl on triangles

AMw = i/ w(X, y)dx dy.
Tl Jr

Finally, U}, = A(T})u stands for the mean value of the functioon the triangl€T, andu’
stands for the array of alll fork=1,..., N',

The knowledge of the function on the griel ™! through its cell-averagas*! enables
its representation on the next coarser @eldn the following way

1 3
0 =y 2 [Tl @
| ’ j=0

where 1][]*1 denotes the four triangles @&'+* composing the triangld;', the central
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: 055

FIG. 1. Division of the triangleT] into Ty** for j =0, ..., 3 and neighborg], T}, T, used for the recon-
struction.

subtriangle being conventionally denotedTﬂﬁ L and the three non-central subtriangles by
the index of the vertex that they share with (see Fig. 1 for the division of triang[&}).
Equation (2) can be viewed as the application pfci;'ectionoperatorP,'Jrl from the reso-
lution levell + 1 tol, that mapsi'** to U'

The multiscale decomposition is based on this projection operator angatigtion
operatorQ}Jrl from the resolution leveltol + 1, that maps the valueb to predicted values
@'+ which differ fromu'+2. This prediction operator should satisfy

PO, =1d. ®)

In practice, for each triangl&', the predicted valuel”ijl for j =1, 2, 3 are defined as
linear combinations of some valuels associated to triangles on the coarse idhat are
in some neighborhood dfi'. Note that (3) means that the value on the central subtriang
TI+l is computed by imposing conservation of the total surﬁ'ibn

3
‘-I—i{+l‘U!J61 — |T|I ‘G‘ _ Z |T|+1‘U|+l. (4)
=1

We also define the details
d,=uf-at forj=0,....3 )

Combining (2), (4), and (5) we get

Z ‘TIH
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thereforedi',o, which corresponds to the central triang]bo”, does not need to be stored.
We denote byd' the detail vector consisting of the coeﬁiciedﬂg fori=1,...,N"and
i=1,2,3.

Consequently, the encoding algorithm can be summarized as follows.

ALGORITHM 1. Encoding. Assuming thatis known by its cell average values on the
finest gridQt,

eForl=L—-1\0
—Coarsening:computed' using (2).
—Prediction: from ', computell ** on @'+ using the prediction operat@ , ;.
—Details: compute the detaild' using (5).

This algorithm defines a one-to-one transformation between the fine grid cell-avatage:s
and the multiscale representation givertByandd®, . . ., d-~*. Note that the same amount
of storage is used in the two representations. The multiscale representation produce
the above algorithm can both be used to compress the functsrdetailed in [15] and to
measure its local smoothness. This last feature is the one that we develop here.

2.1. Polynomial exactnessOne of the important features expected from a multiscal
representation is that the decay in scale of detail coefficients reflects the local smoothi
of the functionu. It is well known that this is related to thgolynomial exactnessf the
prediction operator: we say thﬂJrl has polynomial exactness of ordér if and only if
for all u e Iy (polynomials of total degredl) we haveu'+* = @'+, i.e.,d' =

Since the predicted valtféf’jl is a linear combination

Ot = D Amlp,
meN (k)
whereN (k) corresponds to a neighborhoodTf, the details are given by
1
dy i = Am—— [ u.
3= bt 2

In the wavelet framework, we define thealing functionandwavelets

1
I |T| | T and = (pll(Tl Z )Lm(ﬂm,
meN (k)
wherek; is such thafl, ** = T, }*. With such notation we have

G'kz/Rzu<pL=<u,<p,'(> and | Z/Rzuw‘lﬁj = (U, Yy ;)-

Clearly, polynomial exactness of ordst is equivalent to the orthogonality Qﬁfﬂ(’ j with
My. Therefore, ifu has smoothness* for somes > 0 within the supportA of v, ;, we
can invoke classical local polynomial approximation to obtain the estimate

ldij| = ’/”I/f'k,i

[ ; I M-+1
= Hl[fk,j HL1 p'er}[fM U — Pl < C2 min(s M+ )|U|C5(A' (6)
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In order to justify the use of the details as smoothness indicators, we need a conv
property: small detaila;ii'ﬁj should indicate that the encoded function is locally smooth
We also need some stability in the sense that we can control in some prescribed norn
perturbation ol resulting from thresholding the small details.

This requires some additional analysis on the behaviour of the prediction operator, w
iterated from coarse to fine scale. This type of problem is well known in the context
subdivision schemdsr computer-aided geometric design (see [11] for a general survey).
amounts to analyzing the smoothness properties dfrtiiefunctionsg? that are obtained
by iterating the prediction operator on the fundamental dgta s . In the biorthogonal
wavelet terminologyy? is thedual scaling functionvhich is used for synthesis, in contrast
to theprimal scaling functionp? which is used in the analysis.

More generally, we can define dual scaling functigfysand Waveletsﬁ'k,j, as limit
functions obtained by iterating the prediction operator on the fundamentalidaté ; or
by iterating the reconstruction from a single non-zero dezt,'@jl: 1. If they exist, these
functions are locally supported in a neighborhoodofin the setting of uniform triangula-
tions, thegt, are simply obtained from thel by a change of scale, while the dual wavelets
are directly given by, ; =i — ¥i’*, where agairk; is such thaffy "™ =T;**. The
smoothness of these functlons is thus entirely determined by the smoothness of the c
scale functiong}.

In particular, if the limit functions are i >, we have by rescalinmt/NfL,,- Lo ~ 1@ llLe ~
2-2/p_This will be exploited to evaluate tHe® error resulting from a thresholding proce-
dure. Wavelet theory also indicates that if these limit functions a@!ifor somet > 0,
then if 0< s < t, the propertyd}| < C2~'s for all trianglesT, in the neighborhood of some
region implies thati hasC*® smoothness in this region (see [14]).

We now discuss a choice of the prediction operator that ensures some smoothness
C! for the limit functions.

2.2. Astable reconstruction algorithmln Harten’s framework, the prediction operator
typically relies on a polynomial reconstruction at the continuous level: the neighborha
N(k) is chosen in such a way that there exists a unique polynopélly such that
pi-t=ul-1, for allmin A/ (k). The predicted valug) is then simply defined as the average
of p onT}. This choice clearly ensures polynomial exactness of okiein the 1D case
(and thus in the 2D tensor product case) it is known that the corresponding limit functic
have some positive smoothness.

A similar procedure can be proposed in the case of triangular discretizaticn(ri:‘,',l-szjL1
be the vertices of the trianglE € Q'. For each verticéﬁ', j» we can associate a polynomial
pi'!j (X, y) of degree lower or equal tM defined by imposing the so-called “recovery
condition”: the mean values qu and the mean values of the functiorshould coincide
ona setV' of neighbor trlangles oﬂ i

AMp, =AMu, if TeV. (7

The reconstructed solution is defined as the mean value of this polynomial on the subtria
-|-|+1 containing the given vertlcﬁ (as shown on Fig. 1).

it =AM ™Mpl; forj=1,....3 (8)
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The mean value on the central subtriangle is computed by imposing conservation of
total sum onTI see (4). The caskl =1 (i.e., second order accurate reconstruction) wa
numerically experimented in [15], together with other strategies to spledi;.

We shall see below that a straightforward selectiop tfat mimics the 1D construction
fails to provide a stable reconstruction in the sense that the limit function is not ev
in L1, and we shall propose a modified prediction operator which overcomes this dre
back.

We denote byfy the current triangle an@', i =1, 2, 3, the three triangles that share an
edge withT,. Their numbering is such that the verﬁ% of T} does not belong tw' Then
the most natural choice fqo 3 seems to be by imposing (7) @y and the two ne|ghbors
Tl ande. A similar construction is done fgpo 1 and po 2.

Writing

p{),g(x, y) = a:),ax + bl),sy + Coas )

and using the fact that for a polynomial of degree 1 one héR)) ph 5 = ph 3(Xk, Vi), we
obtain the three equations

aé),leL + blo,sy||< + Clo,s = . (10)

for k € {0, 1, 2}. The coefficientsy 3 andbp 3 solve a 2x 2 linear system whose matrix

(A—% %—%)

X =% Yo Yo

is non-singular if the two centroids @ andT, are not aligned with the current centrdi,
which is the case for uniform triangulations. The last coefficagntis computed by (10).

A particular feature of this decomposition is that, for uniform triangulations, the centroid
the triangIeT('),gl is also the midpoint of the segment between the centroids of the triang|
T, and T}. Therefore any plane containing both poink$, ¢/}, u1) and b, yb, Up) also
contains the point,’3, yb'5-, (U} + Ub)) whatever the value op(x), yb). In other words

the interpolated value on non-central subtrianglegladoes not depend on the value of the
function onTy,

(U] + ). (11)

This remark enables us to show in a simple example that this scheme is not stable.
consider the case of a piecewise constant function equal to one on a tigraye to zero
everywhere else. Aftem iterations of the subdivision scheme the reconstructed functio
takes the value™on the center triangle of theth level which clearly means that the limit
function is not bounded (and not evenlif since it features a Dirac at the origin).

We have not yet analyzed the higher degree reconstructions from this point of vie
but they present anyway the other drawback of requiring much larger stencils to comg
the local reconstruction polynomials. We adopt therefore an alternate solution consis
(again in the case of uniform decomposition) of the following reconstruction scheme
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four triangles,

lj'loJA,rol = U'o’

tot = U+ (U, + U — 20}) /6, 12
tos = U+ (U + U — 20,) /6,

tos = U+ (U) + u, — 20%) /6.

Although not based on a polynomial selection process, this reconstruction is still exact
polynomials of degree one and thus second order accurate.

Moreover, it is stable, in the sense that the limit function@asmoothness for atl < 1.
We postpone the proof of this fact to Appendix 1, as well as some remarks concerr
non-uniform triangulations.

3. NUMERICAL SCHEME

As already explained, our starting point is a classfate volume schemfer solving
Eg. (1) on thefinestgrid Q-. Such a scheme computes at titge= nAt approximate
averagesi; " ~ A(THu(., t,) of the solutionu by the following steps.

ALGORITHM 2. Finite Volume Scheme.

e Initialization: Oy ® = A(T,")uo.

e lterations: at each time step
Step 1 Reconstruction: Use a reconstruction oper&esR(.; u-") to obtain
point values.
Step 2 Flux evaluation: comput@_b“, an approximation of

— divf(R)dx dy.
|T|<L| Te

Step 3 Advance in time:
U:("n+l — U:(_,n . A'[YSII("”.

We summarize by, the discrete non-linear evolution operator that matp%to u-"+1.
The reconstruction and flux approximation steps are detailed in Appendix 2. In particu
the flux evaluation is based on the remark that (by the divergence theorem)

1 1
DL(R) = =7 Z/ f(R(0)) -nijdo = = Y || i) (13)
‘Tk} RS ‘Tk| j
with
£l = 1 f(R(0))-ng i do
“I g | Uy, G

Therefore DL ~ DL (R) can be computed by applying (13) to approximatici_rbg of fy;
(we have used ENO reconstruction on each side of the small édgese Appendix 2).
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We will now explain how the multiscale decomposition of the solution is used to spe:
up the flux evaluation, through a modification in step 2 of the finite volume scheme. To tl
effect we first define for &1 < L the corresponding fluxes

1

D(R) = —
‘ Ty

/ divf(R)dx dy. (14)
T

By the divergence theorem, this mean value can again be computed by

1 1 o
PR) = g 3 [, 1R mesde = gy Sl 9
with
fij =1 | f(R@) ngjdo.
|The | Jr,

Each integral oveFL’j is the sum of integrals over some edges of the finest grid

Tl fe = D TRl . (16)
I‘r'-ﬂcl“{(vj
We now defineD}, ~ DL(R) by
— 1
DL:mZ‘FL,J“—LJ’ 17)
J
where
Tl = >0 [mwlfh (18)
F,';]CFLJ

with f_an the approximate fluxes computed on the finest grid. Therefore, the computatior
5{( only requires the fine grid fluxes that are supported on the coarse @eslote that
this is in general more accurate than directly defimﬂgand f_'k’]- by the same procedure
as on the finest mesh. Indeed such a procedure generates an error which is governed |
coarse mesk®' and leads in practice to numerical instabilities. On the other hand, this
very costly, and the multiresolution representation of the solution can be used to avoid
evaluation ofD_,E on the finest grid wherever it is possible.

At this point, we cannot extend directly what is done in one dimension, where the flux
can be viewed as primitive functions and are approximated in the smooth regions from
coarse grid values through a point value multiresolution interpolation scheme. Followi
Abgrall [1], we take instead as quantities of intereét,, the mean values of the flux
divergences over the cells. We then use the prediction algorithm described in the previ
section in order to approximate these values at fine scales in the smooth regions.

Let u~" be the solution computed on the fine grid at tim&t. We denote byM the
encoding operation described by algorithm 1

Mub" = @, don, L dE

and byM~1its inverse M~IMuU-" =ub".
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For any seG c U, ', we denote byl the thresholding operation
d,;=0  j=123 if T, ¢G,
and we define
- = M1 TeeMut ", (19)
where the gridG" is defined by
G"={T,. st.|d ;| = & =2 "e forsomej € (1,2, 3}}.
The parameter controls the discrete?® truncation error resulting from the thresholding

||fJL'n _ LTLnH — Z |TkL‘ |U||("n _ U:(—”! ~ 2L Z ’GL"” _ Jtn|
k k
Indeed, one has

3
||GL’n _ JL”“ < Z Z ||dll<ﬂzlkj ||L1

TagGn j=1

3
ey > 27l

TlgGn j=1

3
<Cc2te Z sz'

TigGn j=1

L
<C2he ) #H2!
1=0

L
<Ce2t Z 2 = Ce,
1=0

up to a change in the consta@it Here we have used the existenceldfdual functions
associated to our prediction scheme.

Applying the standard finite volume scheme would produce atthe next timesiég' =
Ut — AtD-". The modified scheme relies on the construction of &&&t which contains
G" and such that

IM g MFLTS" — FLT-"| < Ce. (20)

The seG" will be further detailed and justified. We use it now to define our finite volum
multiresolution scheme, to be used instead of the standard one

UL,n+1 — UL’” _ At'bl"n,
(21)

bL'n = M_lTén+1M5L'n.
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The error due to replacinB--" by Dt can be estimated by

. = 1
IDE" = DR = I M Tgna MFLUET = Rt 057 — M T MU

IA

1
E(HM*T@HM Foub" — Fout"+ ot — M Tgea MUt

c+¢C
At

IA

€.

In the case where the initial finite volume schemé igontractive, we can easily estimate
the error between"" and the solution™" which would be obtained by the standard finite
volume scheme with the same initial condition, since we have
e e L e e [Tl ST
S ||JL,n—l _ ,UL,n—l” + At”ij,n—l _ 5L,n—1”
< @5 4 (C + C)e
n(C + C)e.

A

A natural choice for the parameteis a value which makes this last estimate of the sam
order as the intrinsic error estimate of the finite volume scheme (typicallyiffR

In practice the computation of tHB-" is done in the following way, which replaces
Step 2 of the standard algorithm.

ALGORITHM 3. The flux evaluation algorithm.

Step 1 Compute the seB™t! (see Algorithm 4).

Step 2 Compute théD%s on the coarsest grigt® using (17)—(18).

Step 3 For each level =1 /7 L, compute the approximat@'’s by
o If Tl e Gntl, 75{( is accurately computed using (17)—(18) as on the coarsest grid.
. eIseﬁL is approximately computed by interpolation of the val@i#s® using (12)

The critical point in this algorithm is the construction @ from G" in such a way
that (20) is satisfied. Here, we have simply extended the construction proposed in 1C
Harten [13], which is based on the following heuristics:

e Due to the hyperbolicity of the problem and the CFL condition, the local smoott
ness—or irregularity—of the solution does not propagate further than one cell away in «
time step. Therefore if} is in G", it should be inG"t* along with all its neighbors on the
same level.

o We must also foresee the apparition of discontinuities in the case of non-line
equations. Fine levels which are not used at a given time in a given region may subseque
become necessary. The rate of decrease for details from one level to the next is an indic:
of the order of smoothness of the function. By (6) we hdye: O(2-?) if the solution is
C2. In such smooth regions, we thus roughly have the relatjan 4de’]—1 between details
at two consecutive levels. If a triangTé € G"is such thatdLI > 8¢ we derive the heuristic
lower bound on the finer level

1+1
dk,j > 28| = &|+1-

Even ifthisis not actually the case at the currenttime step, we foresee the possible forme
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of high gradients or discontinuities at the next time step by including all subtria‘rﬁg]‘és
in G+,

We summarize the definition @"** in the following algorithm.
ALGORITHM 4. The gridG+2,

e Initialize G+ = Q0
e Forl=L—-1\0
—Fork=1, N!
% If |di| > & then add T/ to G™*2 for all T| that share a vertices wiffy.
% If |di| > 8¢ then add T, " to G™.

It should be well understood that this heuristic construction—which gives excelle
practical results—is not rigorously proved to yield the desired (20). A deeper analy
of more sophisticated constructions @+ that would fulfill this property is currently
under investigation. In particular, it appears that an important requirement is that this
has a certaitree structurén the sense that i, € G" thenT), € G™ whenevefT, c T,..
This structure is also crucial toward fully adaptive computations, since it allows a one-
one correspondence between the truncated multiscale decomposiiidbr? @ind its cell
averages on an adaptive triangulation associated to tha"sét

4. TESTS

In this section we show results that validate the multiresolution scheme coupled w
the ENO scheme (see Appendix 2). We use the Heun scheme instead of the explicit E
scheme to ensure second order accuracy in time as well as in space.

We also illustrate the numerical efficiency by studying simultaneously the error and
computing time for different compression rates.

The first example is the periodic function used as a benchmark in [10]. The equatio
assumed to be linear with constant veloeityfwo different directions are testegl= (1, 0)
anda= (0.7, 0.7). The initial condition igg(X, y) = sin(2zX) sin(2ry) and the domai®2
is the unit square [AL] x [0, 1]. The rate of convergence of the method is determined fror
the error, defined by the!-norm of the difference between the numerical and the exa
solution. This numerical error is represented as a function of the space discretization ste
The evaluation after one quarter of a period (respectively one period) is displayed in Fi

Flux=(1,0) Flux=(0.7,0.7)
a 1 b 1
0.1 ¢
0.1 ¢
o o 001}
0.01 F
0.001 | <
0.001 : 0.0001
0.01 0.1 0.01 0.1
h h

FIG. 2. L, error for the first ¢) and the secondx) order schemes at time=0.25. Initial condition
Uo(X, Y) =sin(2r x) sin(2ry).
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Flux=(1,0) Flux=(0.7,0.7)

01} 0.1 ¢
Lﬂl LLII
0.01 } 0.01
0.001 : 0.001 ‘
0.01 0.1 0.01 0.1
h h

FIG. 3. L, error for the first{) and secondx) order schemes at timte= 1. Initial conditionuy(X, y) =
sin(2r X) sin(2ry).

(resp. Fig. 3). On each graph the two curves correspond to the first order flux and the E
one; see Appendix 2. The straight lines show the best fitting numerical orders. The f
points correspond to different space discretizatien/2A with A the area of any triangle
of the regular finest grid. The finest discretizatioa: 0.0125 is obtained with five levels in
the multiresolution, (with 12,800 triangles on the finest level). The CFL numibé¢h is
fixed to 0.1. For each discretization two computations are done, one directly on the fir
grid without multiresolution analysis and the other with the multiresolution analysis and t
tree algorithm (3) for the flux computations. The goal here is to test the flux computati
accuracy; therefore the thresholding in the multiresolution analysis is not activated. B
computations give exactly the same results which are summarized in Table I. Order:
accuracy comparable to those in the cited reference are obtained.

We turn now to our real purpose, which is to use multiresolution in order to solve PD!
with discontinuous solutions. As a typical example we choose the case of a translal
disk. The initial condition isig(x, y) =1 if (x —0.5)?> + (y — 0.5)? <r? andug(x, y) =0
elsewhere witlr =0.25. The velocity isa= (1, 1) and periodic boundary conditions are
set on the unit square. Three different types of computations are performed using fi
five, or six levels of resolution. The coarsest mesh is composed of 50 triangles—51,.
on the sixth level. The CFL condition is unchangeéd,/h=0.1, and we translated the
disk over one period (= 1). For each discretization a computation without multiresolutior
is performed on the finest level using the compressive ENO flux evaluation. To illustr:
the multiresolution representation we plot the superposition of the meshes with a differ
shade of grey for each level. Only triangles where the fluxes are computed by integra
are represented. Figures 4 and 5 correspond to computations done using five and six |

TABLE |
Numerical Orders of Convergence Initial Condition sin(2rX) sin(2my)

Fig. Time Flux direction 1st order (num) 2nd order (hum)
1 (left) 0.25 (1,0) 0.95 1.55
1 (right) 0.25 0.7,0.7) 0.9 1.95
2 (left) 1 (1,0) 0.9 1.45

2 (right) 1 (0.7,0.7) 0.7 1.9
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Hybrid grid - 5 levels

threshold = OLNN25

Y-Axis

X—-Axis

FIG. 4. Mesh for 5 levels after one period. Modified ENO scheme.

with a tolerance = 25- 10~° on the coarse grid. We see that the fine grid is used only in tt
immediate neighborhood of the discontinuity and actually allows us to detect its locat
quite precisely. This feature accentuates itself as the number of grid levels increases.
computations are then compared in terms of accuracy and speed.

In Fig. 6, theL -error between the exact and computed solutions is displayed as a funct
of h for tolerance levels = 25- 10° ands =5- 10~*. In the case = 0 the multiresolution
is not used and all the fluxes are computed by integral evaluations on the finest grid.
three discretizations=0.025, 0.0125, and 0.00625 correspond to computations done usi
four, five, and six levels starting from the same coarse grid of fifty triangles. This figu
indicates that the multiresolution does not deteriorate the rate of convergence—even the
at a given discretization the error increases with the tolerance

On Fig. 7, we compare simultaneously the CPU time and the precision as a function of
tolerance leved. The computations are done using six levels of multiresolution. As expecte
the accuracy is roughly an affine functionsgkince it includes the basic error foe= 0 and
the truncation error which depends linearlyofore small enough the error thus remains
close to the error of the initial finite volume scheme. Note that the CPU gain in increas
¢ is limited and that for a value such as-0.0002, we already have reached the maxima
reduction (roughly a factor of two) for an increase of the error only by seven percent.
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Hybrid grid — 6 levels

threshold = 0.00025

X—-Axis

FIG.5. Mesh for 6 levels after one period. Modified ENO scheme.

An important factor in the CPU time reduction is the alternative of a centered (le
expensive) scheme for some flux evaluations, namely,f{Hie located in the regularity
zone of the solution. Many suc L’s are encountered in Step 1 of the tree algorithm (3)
For thesef [’s we use a centered scheme (Lax—Wendroff) instead of the more costly EI

0.04 . :

0.03 1

0.02.}

0.01 0.02 0.03
h

FIG. 6. L, error as a function of the discretizatibnfor different tolerancest =0(+), e =25-107° (x),
ande =5-107“ (x) Discontinuous initial condition.



MULTIRESOLUTION SCHEMES ON TRIANGLES 279

a 20000 b om
16000 |
0.018
8 12000 f \ { «
' 0.016
8000
e—— 0.014
0 0.0002 0.0004 0.0006 0 0.0002 0.0004 0.0006
epsilon epsilon

FIG. 7. CPU time and.; error as a function of the toleraneeDiscretizationh = 0.00625. Discontinuous
initial condition.

reconstruction: Eq. (31) is replaced by

1 . by .
fej :E(a'nk){(uk+uj)_At<%+d_y)(uk_Uj)}, (22)

where(dy, dy) are the coordinates of the vector joining the centroids of the triar'lt'jfes
and TjL. For a computation of five levels, for instance, the CPU time required for a ft
computation on the finest grid with the compressive ENO scheme is 2149 s. If the multir
olution reconstruction is performed with a tolerance 25- 10~° it falls down to 1437 s.
Eventually, if the centered Lax—Wendroff scheme is used on the fine grid wherever
solution is smooth enough, the CPU time is again reduced to 1007 s without affecting
accuracy.

CONCLUSIONS

This work describes the coupling of multiresolution on triangles with finite volum
schemes. The multiresolution analysis is used in order to apply ENO reconstruction c
when this costly procedure is really needed. The numerical simulations show a signific
CPU reduction. They are also—to our knowledge—the first experiments with several ne:
triangular grids. We have in mind several possible extensions of this work, first of all
apply this method to non-linear equations with possibly non-convex fluxes. In that c:
not only the reconstruction but the numerical flux function itself becomes costly. Quadre
reconstructions are also desirable in order to improve the accuracy of the scheme. The
goal remains however to solve the equations, not on the finest grid, but on an adaptive
composed of triangles from various gri, which should allow much more significant
CPU reductions. An intermediate study is currently performed in order to handle prope
the difficulties already encountered in one dimension, in particular the accurate computa
of the flux on a coarse level without knowing the solution on the fine grid but on the ott
hand using the fact that the details are negligible.

APPENDIX 1: PREDICTION OPERATOR

In this section we describe how the scheme (7), (8), (9) can be improved and in partic
how the selected reconstruction (12) is obtained.
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A one parameter subdivision schem#Ve replace the definition @fy 5 as given by (11)
by the more general formula

Ups = a(Ul + Uh) + bl + ci, (23)
We now show that the constaratsh, andc can be chosen to ensure the stability and provids

the same accuracy as the initial scheme (9). To this effect the formula (23) should be e
for polynomials of degree one. For such a polynonpiét, y) we have

Ul = P(x65 Yo'a) = a(p(X. Y1) + P(X%. ¥5)) + bP(Xs, ¥5) + Cp(Xp. o)

which is verified for allp € Iy if and only if b=a — 1/2 andc=3/2 — 3a. The scheme
then becomes

Gy = a(d + o) + <a - ;) i, + 3(; - a> i, (24)
and similarly

Gy = a(d, + o) + <a - ;)GZ + 3(; - a> 3,
and

1 1
Gyt = a(d + o) + <a - 2)@ + 3(2 - a) a

The central subdivisioﬁ'offol is determined so as to satisfy (4)

1 1
i = <9a - 5) ah — <3a - —) () + U, + ). (25)

Fora=1/2, one obtains the original non-stable scheme (7), (8), (9). We shall now see t
other values of a improve the stability in the sense that the limit functions are not or
integrable but also blder continuous.

Convergence. There exists now many different techniques to analyze the converger
of subdivision algorithms, as well as the smoothness of the limit function. Some of the
techniques make use of Fourier analysis, while other directly operate in the “physic
domain (see, e.g., [4, 11] for substantial review on these different approaches). Here
are specifically interested in evaluating thel#ter smoothness. In this context, a standarc
analysis method consists of deriving an auxiliary subdivision algorithm which maps t
(infinite) vectorD' of finite differences between averages on adjacent triangles at level
the same finite difference vect@'*! at levell + 1. Convergence anddtier smoothness
of the limit follow by proving a contraction property on this auxiliary scheme.

More precisely, convergence to a continuous limit holds ifi lim||D'[|~ =0 when
starting from the difference vect®® associated to the fundamental data with average
on a single triangle 0f2° and 0 elsewhere (or equivalently from the difference ve&tbr
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FIG. 8. The two cases for the differences.

associated to any bounded sequence of averag@orn addition, if one can prove an
estimate of the type

ID'[li~ < Cp' (26)

for somep €[1/2, 1], then the limit functions havedlder smoothnes8® with o = — 'Igg((g; .

A simple computation from the above formulas defining the subdivision for the avera
shows that the subdivision for the differences can be described by two rules, correspon
to the two cases depicted in Fig. 8 (note that each difference is associated to anedge
an orientation in the normal direction): for a differerg™ at levell + 1 associated to an

edge which does not belong to an edge of the coarserllewel have
D™ = (4a— 1)D} + (4a — 1/2)(D}, + D), (27)

while for a differenceD';rl at levell 4+ 1 associated to an edge which belongs to an edge
the coarser levd|, we have

Dy = (2a— 1)D), + a(D} + D}) + (a — 1/2) (D} + D). (28)

Therefore, if we denote b$, the corresponding operator, we see that it acts bounded
onl|* with norm

ISl = Max{|4a — 1| + 2|4a — 1/2|; |2a — 1| + 2|a| + 2]a — 1/2|}.

It can easily be checked that the right hand side can never be smallerthan 1. Inturn, we ce
hope to obtain (26) with < 1 through a rough estimate such|d3' ||~ < ||So [|'|| D).

In order to prove (26), we thus need to consider higher powespofif | S} <1 for
somen > 0, it is clear that (26) holds witj := || S} || /.

The operatorsS} are also described by a finite number of rules, relafigo D'*+",
which however become more numerous and complicatedimasreases. With the help of
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a computer, we were able to compute these rules and thui&therms|| S || for powers
up ton=8. In particular, we find tha S} || <1 for 0.16<a<0.21 and||%|| <1 for
0.14<a<0.23.

Therefore, we are ensured that the limit function has some positil@elHSmoothness
for values ofain the interval [0.14, 0.23]. Itis of course possible to evaluate this smoothne
by o = —log([| £ [1)/8 log 2 since we have < || S ||*/8. However, direct evaluation of the
differences| D' |~ indicates that this is a pessimistic estimate in the sensetbaild be
actually much smaller thaps8 || /8.

In fact, it is even possible that (26) holds with somstrictly smaller than the spectral
radius ofSp onl™ (i.e., limn_ .|| S} |1 ¥/") for the following reason: the differences cannot
be any arbitrary sequence indexed by the edges since they need to satisfy compatib
relations (the differences over all the edges connected to one point sum up to zero w
conveniently oriented). Therefore a sharper estimate feould be the spectral radius of
S on the subspace ¢ defined by these conditions.

At a more empirical level, we have directly evaluated the contraction f@6t! |~/
|D' I~ which tends to stabilize fdr> 5. We find that this experimental contraction factor
Pexp iS strictly less than 1 for 0.18 a < 0.25 and is close to its minimal valye~ 0.7
for 0.16 <a <0.21. We can therefore conjecture that the limit function is continuous fc
0.13<a < 0.25 and has Hider smoothnesg~ 0.5 for 0.16<a <0.21.

In another direction, one can identify as follows an intervafout of which no Hlder
smoothness can be expected. Consider a triangl'dfwhich is a central subtriangle of a
triangle inQ' (e.g.,TA,T)1 on Fig. 1.) We see from (27) that the three differences associat
to its edges only depend on the three differences associated to the edge of the triang
Q' which contains it. With an outward orientation of the normal, the matrix describing th
dependence is given by

da—1 4da-1/2 4a—1/2
da—1/2 4a—-1 4da—1/2]. (29)
da—1/2 4a-1/2 4da—1

Some information on the smoothness of the limit function can be derived from the sp
tral properties of the above matrix: the eigenvalues of this matrix.arei, = —% and
A3=12a— 2, so that ifa does not belong to J112, 1/4[, we can find an initial vector
DO (which does satisfy the compatibility conditions) such thBX ||~ does not tend to
zero.

Optimal parameter. We finally test the approximation properties of our subdivisior
scheme for different functionsand different values of the paramegeWe start from the
mean values of the function at the coarse §tigd(256 triangles). Iterating the subdivision
scheme from this coarse data produces a limit functiomwhich can be viewed as the
projection ofu onto the space spanned by the dual scaling functions. A practical way
select a good value @& is by optimizing the errofju — u;|| in some prescribed norm. In
practice, we can only do a finite number of subdivision steps. After three iterations,
compute the errors between the result and the exact mean valuesnothis finer grid,
which amounts to evaluating the averagesiof u on the finest grid23. The results are
presented in th&® norm (the behavior with respect éowas observed to be similar in the
L2 andL> norm).
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FIG.9. L;norm of the error, a regular function.

e For a smooth functioru(x, y) =sin(2z x) sin(2ry), the results are shown in
Fig. 9.

e Foradiscontinuous function(x, y) = 1 on adisc centered at (0.5, 0.5), with radius
0.2 andu(x, y) =0 elsewhere, the results are shown in Fig. 10.

0.14 T T T T
Error in the L1-norm
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0.04

0.02 1 1 1 L

FIG. 10. L, norm of the error, a discontinuous function.
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These two figures justify our choice for the value of the parameterl/6 which be-
longs to the interval 10.16, 0.21] of highest smoothness and leads to a particularly sim
scheme,

ﬁ‘oJ,rol = G'0

Uo = Up + (U + U5 — 20y) /6 (30)
Ugs = Up + (Uy + U5 — 23) /6

Ups = Uy + (Uh + T, — 205) /6

The above analysis is tied to the use of fully uniform triangulations. In practice, tt
triangulation can be thought of as uniform after a certain number of subdivision steps, exc
near the exceptional points and edges corresponding to the coarsest mesh. A more elak
(yet feasible) analysis can be performed in order to analyze the smoothness of the |
functions in these regions (in the uniform regions, smoothness is determined by the prev
analysis). Note that the prediction scheme needs anyway to be modified near the except
points and edges in order to ensure polynomial exactness. A natural generalization of
optimal scheme (with paramet@e 1/6) seems to be by mposm@ 0= u0 for the central
triangle and computing the coefficients of the three remaining prediction rules from t
constraints of polynomial exactness up to order 1 and conservation of the average.

APPENDIX 2: FINITE VOLUME SCHEME
We now detail two steps in the finite volume scheme, namely the design of the reci
struction operatoR and the computations of the flux across the edge3‘of

Computation of the flux ofe-. Let ka = (1/|Fk iD fFL f(¢(0)) - ngdo be the flux to
be computed and (u, v, n) a numerical flux, i.e.F is a Llpschltz continuous function,
satisfying the consistency conditiéi(w, w, n) =f(w) - n. We used a two-point monotone
flux, F(uk, uj, ng j) = F(uk, uj), where the functior(u, v) is non-decreasing in and
non-increasing in (consult [10]). An approximation of the exact flux is then given by

fe, = i) = F (b, 0)),

g

wherei, andii; are two values ofi chosen from each side of the edg; .
We suppose Eq. (1) to be linear

3u + adcu + bayu =0
with convection terma= (a, b). For such linear equations, we apply an upwind flux
F(u,v) = F (u) + F_(v),
where

F.(u) = maxa-n, Ou

F_(u) = min(a-n, O)u
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to get the approximation
fio; o flo) = Fi(in) + F_(@)). (31)

Design of the reconstructioR. In the previous numerical fluix and(; denote ap-
proximations of the solution on the edgE§j. Since this solution is known by its mean
values on the triangles on both sideerfJ-, a reconstruction algorithm is required to re-
cover accurate point value approximations. This reconstruction must satisfy the follow
conditions [5].

e Piecewise polynomiaRestricted to each triangle, Rt = R|r is a polynomial of
degree — 1.

o Approximation Whereverw is smooth,R(.; w)is anr-order approximation ofv:
R(x; w) =w(X) + h", whereh is the size of the triangles.

o Conservation of the averaged(T ) R(.; w) = wy.

To designRt, one selects a set of triangles in the neighborhood of the current trian
T. The number of triangles in this stencil must be large enough in order to determine
coefficients of the polynomiak+ by imposingA(Ty)R(.; w) = wy for each triangleTy in

the stencil. These conditions can also be imposed in a least squares sense. This ada
stencil strategy seems to ensure the stability and the convergence of the scheme. We re
[5] for such reconstruction on triangular meshes. We test here the reconstructions prop
in [10]:

Flux 1. The simplest choice i = U, {j = U'J- This reconstruction, by a constant
function, leads to a first order accurate scheme as shown in Section 4.

Flux 2. A more accurate flux consists in takig to be the value of aN-degree
polynomial p, associated tdl,- at the mid-point of the edge under consideration. Fo
N =1, px is one of the three polynomials having the same averagetttearil,> and two
neighbor triangles. A limiting procedure is applied: from the three possible candidlates
we select thepk for which |V pkl|2 is maximal with the restriction that neither overshoot
nor undershoot occurs at any of the three triangle sides; see [10] for details.
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