
Journal of Computational Physics161,264–286 (2000)

doi:10.1006/jcph.2000.6503, available online at http://www.idealibrary.com on

Multiresolution Schemes on Triangles
for Scalar Conservation Laws

Albert Cohen,∗ Nira Dyn,† Sidi Mahmoud Kaber,∗ and Marie Postel∗
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This paper proposes a multiresolution procedure adapted to triangular cell-averages
to improve the performance of finite volume schemes by reducing flux evaluation
cost, using the approach introduced by A. Harten. A specific coarse-to-fine predic-
tion scheme is proposed that ensures the stability of the computations, even when a
large number of scales are involved. Numerical tests are presented that illustrate the
computational gain as well as the order of accuracy of the scheme.c© 2000 Academic Press
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1. INTRODUCTION

Multiscale methods are a powerful tool in mathematical analysis and applications such as
signal processing and numerical simulation. The theoretical background underlying these
methods has been substantially reinforced since the emergence of wavelet theory in the
1980s.

One of the particular interests of multiscale discretizations into wavelet bases is that,
by a simple thresholding of its coefficients in such a basis, a function is automatically
represented by a coarse scale discretization, together with some additional details at finer
scales which are only needed near the singularity of the function. This is directly used in
signal processing for data compression purposes. In the area of numerical simulation, this
suggests that multiscale methods can be used to approximate the solution of a physical
problem at a low memory and computational cost, if it is smooth except at some isolated
singularities.

Note that the first applications of multilevel techniques in numerical simulation had a
different objective: in the context of elliptic problems, multigrid methods were developed
since the 1970s for the purpose of preconditioning rather than compression (see [6, 8] for
a general survey of multiscale and wavelet methods in numerical analysis).
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In the context of hyperbolic equations or systems of conservation law, the introduction
of multiresolution methods is mostly due to A. Harten [13] and is somehow more closely
related to the idea of compression. In particular, such equations are known to develop
discontinuities, so that one can think of exploiting a multiscale structure to concentrate
the fine grid computations mostly near the edges. This appears as a simple alternative to
adaptive or moving grid techniques which are difficult to operate, especially in several space
dimensions.

Let us explain in a nutshell the strategy proposed by Harten. At the start one is given a
finite volume scheme associated to a fine meshÄL of resolution say 2−L for approximating
the solution of a conservation law. At timen1t the approximate solution is represented by
its averages(ūn

k)k∈ÄL on the various cells ofÄL . The values(ūn+1
k )k∈ÄL are evolved from

the previous one through the evaluation of the flux at the interfaces between each cells. The
idea is then to use a wavelet-like multiscale decomposition of the solution at timen as a
smoothness indicatorin order to reduce the computation of the flux: in the regions where
the details above some scalel ≤ L are small (i.e., below some preassigned threshold), the
flux is assumed to be smooth enough so that we can replace its exact evaluation by an
interpolation from its values on the meshÄl .

At this point, we can make two remarks:

• The accuracy of this scheme is intrinsically limited by the finite volume scheme
at the finest resolution 2−L : the idea isnot to improve the accuracybut rather togain
computational timewhile keeping the same order of accuracy.
• While the flux is computed adaptively, the evolution of the solution at each time

step still takes place on the finest gridÄL which limits the potential computational gain,
even when most details are considered as negligible.

Therefore, a first important trend is the development of fully adaptive multiresolution
schemes for which the complexity is not tried to the finest grid. The main difficulty is to
obtain an accurate computation of the flux in the coarse regions without the help of the fine
cells. Some strategies to solve this problem have recently been proposed in [7, 12].

Another remark is that the effectiveness of Harten’s scheme is related to the ability of
the multiscale representation tocompressthe solution: typically (see [13]) an additional
truncationerror occurs, which corresponds to discarding the details below the threshold.
While this error should remain of the same order as the standard error of the finite volume
scheme, the computational gain on the flux evaluation is reflected by the proportion of
details which are above the threshold. This is even more true in the perspective of a fully
adaptive scheme, where this proportion should reflect the overall computational gain.

For this, it is crucial that the reconstruction operators linking cell-averages from coarse to
fine scales have both certain polynomial exactness properties (ensuring that details are small
in the smooth regions) and stability properties (ensuring that we can control the perturbation
of the solution resulting from thresholding the small details). These requirements are easy to
fulfill in the context of uniform one dimensional or tensor product grids as considered in [3, 9,
17], in which case the multiresolution is a particular instance of biorthogonal wavelet bases.

However, they are much more uncertain on unstructured or triangular meshes, which are
certainly the most commonly used, although some ad hoc constructions are available (see
[1, 2, 16]) which are not proved to be stable in the above sense. Note that similar difficulties
arise for proving stability in the setting of a curvilinear grid obtained from tensor product
grids by parametric maps which is addressed in [9] through the concept ofstable completion.
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Therefore, a second important trend is the derivation of stable multilevel finite volume
schemes in the context of triangular discretizations.

The present paper is concerned with this second trend. We shall develop Harten’s approach
on triangular discretizations, using a specific algorithm for which we prove stability (in
the setting of uniform triangulations). In Section 2, we present the multiscale transform
algorithm. This transform is used in Section 3 to build a numerical scheme for scalar
equations of the type

∂t u+ div(f(u)) = 0, (1)

for t ∈ [0, T ] and x= (x, y)∈Ä⊂R2. Let us mention that the scheme can be extended
in a straightforward way to the treatment of systems. Some numerical tests that show the
efficiency of our scheme are presented in Section 4. The proof of the stability property of our
multiscale reconstruction is done in Appendix 1. It relies on techniques used in computer
aided geometric design to study the asymptotic behaviour of iterative surface refinement
algorithms. Some details on the underlying finite volume scheme are given in Appendix 2.

Our next perspective will be to combine the two trends, i.e., to use the multiresolution
tools developed in the present paper within a fully adaptive scheme.

2. MULTISCALE TRANSFORM

We shall describe in this section multiscale transform adapted to cell-averages on trian-
gles, for which we shall prove stability.

In the context of Harten’s framework we build a hierarchy of nested gridsÄl for
l = 0, . . . , L. The gridsÄl are generated from the coarse grid triangulationÄ0 by iterative
decompositions of its triangles. One triangle is divided into four triangles by connecting
the midpoints of its three edges. The number of triangles on the gridÄl is denoted byNl

(Nl = 4l N0) and a generic triangle ofÄl by Tl
k for 1≤ k≤ Nl . We denote by∂Tl

k and0l
k, j

the boundary ofTl
k and the common edge toTl

k andTl
j , so that∂Tl

k =
⋃

j0
l
k, j . The area

of Tl
k and the length of0k, j are denoted by|Tl

k | and|0k, j |. We denote bynk andnk, j the
outward normal of∂Tk and its restriction to the edge0k, j . The centroid of the triangle
Tl

k has coordinatesxl
k= (1/|Tl

k |)
∫

Tl
k

x dx dy, yl
k= (1/|Tl

k |)
∫

Tl
k

y dx dy. We also refer to the
mean operatorA on triangles

A(T)w = 1

|T |
∫

T
w(x, y) dx dy.

Finally, ūl
k=A(Tl

k )u stands for the mean value of the functionu on the triangleTl
k andūl

stands for the array of all̄ul
k for k= 1, . . . , Nl .

The knowledge of the function on the gridÄl+1 through its cell-averages̄ul+1 enables
its representation on the next coarser gridÄl in the following way

ūl
i =

1∣∣Tl
i

∣∣ 3∑
j=0

∣∣Tl+1
i, j

∣∣ūl+1
i, j , (2)

where Tl+1
i, j denotes the four triangles ofÄl+1 composing the triangleTl

i , the central
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FIG. 1. Division of the triangleTl
0 into Tl+1

0, j for j = 0, . . . , 3 and neighborsTl
1 , Tl

2 , Tl
3 used for the recon-

struction.

subtriangle being conventionally denoted byTl+1
i,0 and the three non-central subtriangles by

the index of the vertex that they share withTl
i (see Fig. 1 for the division of triangleTl

0).
Equation (2) can be viewed as the application of aprojectionoperatorP l+1

l from the reso-
lution levell + 1 to l , that maps̄ul+1 to ūl .

The multiscale decomposition is based on this projection operator and on aprediction
operatorQl

l+1 from the resolution levell to l + 1, that maps the values̄ul to predicted values
ũl+1 which differ fromūl+1. This prediction operator should satisfy

P l+1
l Ql

l+1 = Id. (3)

In practice, for each triangleTl
i , the predicted values̃ul+1

i, j for j = 1, 2, 3 are defined as
linear combinations of some valuesūl

m associated to triangles on the coarse gridÄl that are
in some neighborhood ofTl

i . Note that (3) means that the value on the central subtriangle
Tl+1

i,0 is computed by imposing conservation of the total sum onTl
i ,

∣∣Tl+1
i,0

∣∣ũl+1
i,0 =

∣∣Tl
i

∣∣ūl
i −

3∑
j=1

∣∣Tl+1
i, j

∣∣ũl+1
i, j . (4)

We also define the details

dl
i, j = ūl+1

i, j − ũl+1
i, j for j = 0, . . . ,3. (5)

Combining (2), (4), and (5) we get

3∑
j=0

∣∣Tl+1
i, j

∣∣dl
i, j = 0,
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thereforedl
i,0, which corresponds to the central triangleTl+1

i,0 , does not need to be stored.
We denote bydl the detail vector consisting of the coefficientsdl

i, j for i = 1, . . . , Nl and
j = 1, 2, 3.

Consequently, the encoding algorithm can be summarized as follows.

ALGORITHM 1. Encoding. Assuming thatu is known by its cell average values on the
finest gridÄL ,

• For l = L − 1↘ 0
—Coarsening:computeūl using (2).
—Prediction: from ūl , computẽul+1 onÄl+1 using the prediction operatorQl

l+1.
—Details: compute the detailsdl using (5).

This algorithm defines a one-to-one transformation between the fine grid cell-averagesūL

and the multiscale representation given byū0 andd0, . . . ,dL−1. Note that the same amount
of storage is used in the two representations. The multiscale representation produced by
the above algorithm can both be used to compress the functionu as detailed in [15] and to
measure its local smoothness. This last feature is the one that we develop here.

2.1. Polynomial exactness.One of the important features expected from a multiscale
representation is that the decay in scale of detail coefficients reflects the local smoothness
of the functionu. It is well known that this is related to thepolynomial exactnessof the
prediction operator: we say thatQl

l+1 has polynomial exactness of orderM if and only if
for all u∈5M (polynomials of total degreeM) we haveūl+1= ũl+1, i.e.,dl = 0.

Since the predicted valuẽul+1
k, j is a linear combination

ũl+1
k, j =

∑
m∈N (k)

λmūl
m,

whereN (k) corresponds to a neighborhood ofTl
k , the details are given by

dl
k, j =

1∣∣Tl+1
k, j

∣∣
∫

Tl+1
k, j

u−
∑

m∈N (k)
λm

1∣∣Tl
m

∣∣ ∫
Tl

m

u.

In the wavelet framework, we define thescaling functionsandwavelets

ϕl
k =

1∣∣Tl
k

∣∣χTl
k

and ψ l
k = ϕl+1

kj
−
∑

m∈N (k)
λmϕ

l
m,

wherekj is such thatTl+1
kj
= Tl+1

k, j . With such notation we have

ūl
k =

∫
R2

uϕl
k =

〈
u, ϕl

k

〉
and dl

k, j =
∫
R2

uψ l
k, j =

〈
u, ψ l

k, j

〉
.

Clearly, polynomial exactness of orderM is equivalent to the orthogonality ofψ l
k, j with

5M . Therefore, ifu has smoothnessCs for somes> 0 within the support1l
k of ψ l

k, j , we
can invoke classical local polynomial approximation to obtain the estimate

∣∣dl
k, j

∣∣ = ∣∣∣∣∫ uψ l
k, j

∣∣∣∣ ≤ ∥∥ψ l
k, j

∥∥
L1 inf

p∈5M

‖u− p‖L∞(1l
k)
≤ C2−l min(s,M+1)|u|Cs(1l

k)
. (6)
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In order to justify the use of the details as smoothness indicators, we need a converse
property: small detailsdl

k, j should indicate that the encoded function is locally smooth.
We also need some stability in the sense that we can control in some prescribed norm the
perturbation ofu resulting from thresholding the small details.

This requires some additional analysis on the behaviour of the prediction operator, when
iterated from coarse to fine scale. This type of problem is well known in the context of
subdivision schemesfor computer-aided geometric design (see [11] for a general survey). It
amounts to analyzing the smoothness properties of thelimit functionsϕ̃0

k that are obtained
by iterating the prediction operator on the fundamental dataū0

i = δk,i . In the biorthogonal
wavelet terminology, ˜ϕ0

k is thedual scaling functionwhich is used for synthesis, in contrast
to theprimal scaling functionϕ0

k which is used in the analysis.
More generally, we can define dual scaling functions ˜ϕl

k and waveletsψ̃ l
k, j , as limit

functions obtained by iterating the prediction operator on the fundamental dataūl
i = δk,i or

by iterating the reconstruction from a single non-zero detaildl
k, j = 1. If they exist, these

functions are locally supported in a neighborhood ofTl
k . In the setting of uniform triangula-

tions, the ˜ϕl
k are simply obtained from the ˜ϕ0

k by a change of scale, while the dual wavelets
are directly given byψ̃ l

k, j = ϕ̃l+1
kj
− ψ̃ l+1

k0
, where againkj is such thatTl+1

kj
= Tl+1

k, j . The
smoothness of these functions is thus entirely determined by the smoothness of the coarse
scale functions ˜ϕ0

k.
In particular, if the limit functions are inL∞, we have by rescaling‖ψ̃ l

k, j ‖L p ∼‖ϕ̃l
k‖L p ∼

2−2l/p. This will be exploited to evaluate theL p error resulting from a thresholding proce-
dure. Wavelet theory also indicates that if these limit functions are inCt for somet > 0,
then if 0< s< t , the property|dl

k| ≤C2−ls for all trianglesTl
k in the neighborhood of some

region implies thatu hasCs smoothness in this region (see [14]).
We now discuss a choice of the prediction operator that ensures some smoothness up to

C1 for the limit functions.

2.2. A stable reconstruction algorithm.In Harten’s framework, the prediction operator
typically relies on a polynomial reconstruction at the continuous level: the neighborhood
N (k) is chosen in such a way that there exists a unique polynomialp∈5M such that
p̄l−1

m = ūl−1
m , for all m inN (k). The predicted valuẽul

k is then simply defined as the average
of p on Tl

k . This choice clearly ensures polynomial exactness of orderM . In the 1D case
(and thus in the 2D tensor product case) it is known that the corresponding limit functions
have some positive smoothness.

A similar procedure can be proposed in the case of triangular discretization. Let(Sl
i, j )

3
j=1

be the vertices of the triangleTl
i ∈Äl . For each verticeSl

i, j , we can associate a polynomial
pl

i, j (x, y) of degree lower or equal toM defined by imposing the so-called “recovery
condition”: the mean values ofpl

i, j and the mean values of the functionu should coincide
on a setV l

i, j of neighbor triangles ofSl
i, j ,

A(T)pl
i, j = A(T)u, if T ∈V l

i, j . (7)

The reconstructed solution is defined as the mean value of this polynomial on the subtriangle
Tl+1

i, j containing the given verticesSl
i, j (as shown on Fig. 1).

ũl+1
i, j = A

(
Tl+1

i, j

)
pl

i, j for j = 1, . . . ,3. (8)
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The mean value on the central subtriangle is computed by imposing conservation of the
total sum onTl

i ; see (4). The caseM = 1 (i.e., second order accurate reconstruction) was
numerically experimented in [15], together with other strategies to selectp∈51.

We shall see below that a straightforward selection ofp that mimics the 1D construction
fails to provide a stable reconstruction in the sense that the limit function is not even
in L1, and we shall propose a modified prediction operator which overcomes this draw-
back.

We denote byTl
0 the current triangle andTl

i , i = 1, 2, 3, the three triangles that share an
edge withTl

0. Their numbering is such that the vertexSl
0, j of Tl

0 does not belong toTl
j . Then

the most natural choice forp0,3 seems to be by imposing (7) onTl
0 and the two neighbors

Tl
1 andTl

2. A similar construction is done forp0,1 and p0,2.
Writing

pl
0,3(x, y) = al

0,3x + bl
0,3y+ cl

0,3, (9)

and using the fact that for a polynomial of degree 1 one hasA(Tl
k )p

l
0,3= pl

0,3(x
l
k, yl

k), we
obtain the three equations

al
0,3xl

k + bl
0,3yl

k + cl
0,3 = ūl

k, (10)

for k∈ {0, 1, 2}. The coefficientsa0,3 andb0,3 solve a 2× 2 linear system whose matrix

(
xl

1− xl
0 yl

1− yl
0

xl
2− xl

0 yl
2− yl

0

)

is non-singular if the two centroids ofTl
1 andTl

2 are not aligned with the current centroidGl
0,

which is the case for uniform triangulations. The last coefficientc0,3 is computed by (10).
A particular feature of this decomposition is that, for uniform triangulations, the centroid of
the triangleTl+1

0,3 is also the midpoint of the segment between the centroids of the triangles
Tl

1 and Tl
2. Therefore any plane containing both points (xl

1, yl
1, ū1) and (xl

2, yl
2, ū2) also

contains the point (xl+1
0,3 , yl+1

0,3 ,
1
2(ū

l
1+ ūl

2)) whatever the value ofp(xl
0, yl

0). In other words
the interpolated value on non-central subtriangles ofTl

0 does not depend on the value of the
function onTl

0,

ũl+1
0,3 =

1

2

(
ūl

1+ ūl
2

)
. (11)

This remark enables us to show in a simple example that this scheme is not stable. We
consider the case of a piecewise constant function equal to one on a triangleT0

0 and to zero
everywhere else. Aftern iterations of the subdivision scheme the reconstructed function
takes the value 4n on the center triangle of thenth level which clearly means that the limit
function is not bounded (and not even inL1 since it features a Dirac at the origin).

We have not yet analyzed the higher degree reconstructions from this point of view,
but they present anyway the other drawback of requiring much larger stencils to compute
the local reconstruction polynomials. We adopt therefore an alternate solution consisting
(again in the case of uniform decomposition) of the following reconstruction scheme on
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four triangles, 

ũl+1
0,0 = ūl

0,

ũl+1
0,1 = ūl

0+
(
ūl

2+ ūl
3− 2ūl

1

)/
6,

ũl+1
0,2 = ūl

0+
(
ūl

1+ ūl
3− 2ūl

2

)/
6,

ũl+1
0,3 = ūl

0+
(
ūl

1+ ūl
2− 2ūl

3

)/
6.

(12)

Although not based on a polynomial selection process, this reconstruction is still exact for
polynomials of degree one and thus second order accurate.

Moreover, it is stable, in the sense that the limit function hasCt smoothness for allt < 1.
We postpone the proof of this fact to Appendix 1, as well as some remarks concerning
non-uniform triangulations.

3. NUMERICAL SCHEME

As already explained, our starting point is a classicalfinite volume schemefor solving
Eq. (1) on thefinestgrid ÄL . Such a scheme computes at timetn= n1t approximate
averages̄uL ,n

k 'A(T L
k )u(., tn) of the solutionu by the following steps.

ALGORITHM 2. Finite Volume Scheme.

• Initialization: ūL ,0
k =A(T L

k )u0.
• Iterations: at each time stepn,

Step 1 Reconstruction: Use a reconstruction operatorR≡R(.; ūL ,n) to obtain
point values.
Step 2 Flux evaluation: computēDL ,n

k , an approximation of

1∣∣T L
k

∣∣ ∫
T L

k

div f(R) dx dy.

Step 3 Advance in time:

ūL ,n+1
k = ūL ,n

k −1tD̄L ,n
k .

We summarize byFL the discrete non-linear evolution operator that mapsūL ,n to ūL ,n+1.
The reconstruction and flux approximation steps are detailed in Appendix 2. In particular,
the flux evaluation is based on the remark that (by the divergence theorem)

DL
k (R) =

1∣∣T L
k

∣∣ ∑
j

∫
0L

k, j

f(R(σ )) · nk, j dσ = 1∣∣T L
k

∣∣ ∑
j

∣∣0L
k, j

∣∣ f L
k, j , (13)

with

f L
k, j =

1∣∣0L
k, j

∣∣ ∫
0L

k, j

f(R(σ )) · nk, j dσ.

Therefore,D̄L
k 'DL

k (R) can be computed by applying (13) to approximationsf̄ L
k, j of f L

k, j

(we have used ENO reconstruction on each side of the small edges0L
m; see Appendix 2).
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We will now explain how the multiscale decomposition of the solution is used to speed
up the flux evaluation, through a modification in step 2 of the finite volume scheme. To this
effect we first define for 0≤ l ≤ L the corresponding fluxes

Dl
k(R) =

1∣∣Tl
k

∣∣ ∫
Tl

k

div f(R) dx dy. (14)

By the divergence theorem, this mean value can again be computed by

Dl
k(R) =

1∣∣Tl
k

∣∣ ∑
j

∫
0l

k, j

f(R(σ )) · nk, j dσ = 1∣∣Tl
k

∣∣ ∑
j

∣∣0l
k, j

∣∣ f̄ l
k, j , (15)

with

f̄ l
k, j =

1∣∣0l
k, j

∣∣ ∫
0l

k, j

f(R(σ )) · nk, j dσ.

Each integral over0l
k, j is the sum of integrals over some edges of the finest grid∣∣0l

k, j

∣∣ f l
k, j =

∑
0L

m⊂0l
k, j

∣∣0L
m

∣∣ f L
m . (16)

We now defineD̄l
k'Dl

k(R) by

D̄l
k =

1∣∣Tl
k

∣∣ ∑
j

∣∣0l
k, j

∣∣ f̄ l
k, j , (17)

where ∣∣0l
k, j

∣∣ f̄ l
k, j :=

∑
0L

m⊂0l
k, j

∣∣0L
m

∣∣ f̄ L
m, (18)

with f̄ L
m the approximate fluxes computed on the finest grid. Therefore, the computation of

D̄l
k only requires the fine grid fluxes that are supported on the coarse meshÄl . Note that

this is in general more accurate than directly definingD̄l
k and f̄ l

k, j by the same procedure
as on the finest mesh. Indeed such a procedure generates an error which is governed by the
coarse meshÄl and leads in practice to numerical instabilities. On the other hand, this is
very costly, and the multiresolution representation of the solution can be used to avoid the
evaluation ofD̄L

k on the finest grid wherever it is possible.
At this point, we cannot extend directly what is done in one dimension, where the fluxes

can be viewed as primitive functions and are approximated in the smooth regions from the
coarse grid values through a point value multiresolution interpolation scheme. Following
Abgrall [1], we take instead as quantities of interest,D̄l

k, the mean values of the flux
divergences over the cells. We then use the prediction algorithm described in the previous
section in order to approximate these values at fine scales in the smooth regions.

Let ūL ,n be the solution computed on the fine grid at timen1t . We denote byM the
encoding operation described by algorithm 1

MūL ,n = (ū0,n, d0,n, . . . ,dL−1,n)

and byM−1 its inverse,M−1MūL ,n= ūL ,n.
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For any setG⊂ ∪l Ä
l , we denote byTG the thresholding operation

dl
k, j = 0, j = 1, 2, 3 if Tl

k /∈ G,

and we define

ũL ,n =M−1TGnMūL ,n, (19)

where the gridGn is defined by

Gn = {Tl
k , s.t.

∣∣dl
k, j

∣∣ ≥ εl = 2l−Lε for some j ∈ {1, 2, 3}}.
The parameterε controls the discreteL1 truncation error resulting from the thresholding

‖ũL ,n − ūL ,n‖ :=
∑

k

∣∣T L
k

∣∣ ∣∣ũL ,n
k − ūL ,n

k

∣∣ ∼ 2−2L
∑

k

∣∣ũL ,n
k − ūL ,n

k

∣∣.
Indeed, one has

‖ũL ,n − ūL ,n‖ ≤
∑

Tl
k 6∈Gn

3∑
j=1

∥∥dl
k, j ψ̃

l
k, j

∥∥
L1

≤ ε
∑

Tl
k 6∈Gn

3∑
j=1

2l−L
∥∥ψ̃ l

k, j

∥∥
L1

≤ C2−Lε
∑

Tl
k 6∈Gn

3∑
j=1

2−l

≤ C2−Lε

L∑
l=0

#(Äl )2−l

≤ Cε2−L
L∑

l=0

2l = Cε,

up to a change in the constantC. Here we have used the existence ofL1 dual functions
associated to our prediction scheme.

Applying the standard finite volume scheme would produce at the next time stepFLūL ,n=
ūL ,n−1tD̄L ,n. The modified scheme relies on the construction of a setG̃n+1 which contains
Gn and such that

‖M−1TG̃n+1MFLūL ,n − FLūL ,n‖ ≤ C̃ε. (20)

The setG̃n+1 will be further detailed and justified. We use it now to define our finite volume
multiresolution scheme, to be used instead of the standard one{

ūL ,n+1 = ūL ,n −1tD̃L ,n,

D̃L ,n =M−1TG̃n+1MD̄L ,n.
(21)
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The error due to replacinḡDL ,n by D̃L ,n can be estimated by

‖D̃L ,n − D̄L ,n‖ = 1

1t
‖M−1TG̃n+1MFLūL ,n − FLūL ,n + ūL ,n −M−1TG̃n+1MūL ,n‖

≤ 1

1t
(‖M−1TG̃n+1MFLūL ,n−FLūL ,n‖+‖ūL ,n−M−1TG̃n+1MūL ,n‖)

≤ C + C̃

1t
ε.

In the case where the initial finite volume scheme isL1 contractive, we can easily estimate
the error between̄uL ,n and the solution ¯vL ,n which would be obtained by the standard finite
volume scheme with the same initial condition, since we have

‖ūL ,n − v̄L ,n‖ ≤ ‖FLūL ,n−1− FL v̄
L ,n−1‖ + ‖ūL ,n − FLūL ,n−1‖

≤ ‖ūL ,n−1− v̄L ,n−1‖ +1t‖D̃L ,n−1− D̄L ,n−1‖
≤ ‖ūL ,n−1− v̄L ,n−1‖ + (C + C̃)ε

≤ n(C + C̃)ε.

A natural choice for the parameterε is a value which makes this last estimate of the same
order as the intrinsic error estimate of the finite volume scheme (typically in 2−L/2).

In practice the computation of thẽDL ,n is done in the following way, which replaces
Step 2 of the standard algorithm.

ALGORITHM 3. The flux evaluation algorithm.

Step 1 Compute the set̃Gn+1 (see Algorithm 4).
Step 2 Compute theD̃0’s on the coarsest gridÄ0 using (17)–(18).
Step 3 For each levell = 1↗ L, compute the approximatẽDl ’s by
• If Tl

k ∈ G̃n+1, D̃l
k is accurately computed using (17)–(18) as on the coarsest grid.

• elseD̃l
k is approximately computed by interpolation of the valuesD̃l−1 using (12)

The critical point in this algorithm is the construction ofG̃n+1 from Gn in such a way
that (20) is satisfied. Here, we have simply extended the construction proposed in 1D by
Harten [13], which is based on the following heuristics:

• Due to the hyperbolicity of the problem and the CFL condition, the local smooth-
ness—or irregularity—of the solution does not propagate further than one cell away in one
time step. Therefore ifTl

k is in Gn, it should be inG̃n+1 along with all its neighbors on the
same levell .
• We must also foresee the apparition of discontinuities in the case of non-linear

equations. Fine levels which are not used at a given time in a given region may subsequently
become necessary. The rate of decrease for details from one level to the next is an indication
of the order of smoothness of the function. By (6) we havedl

k=O(2−2l ) if the solution is
C2. In such smooth regions, we thus roughly have the relationdl

k' 4dl+1
k, j between details

at two consecutive levels. If a triangleTl
k ∈Gn is such that|dl

k| ≥8εl we derive the heuristic
lower bound on the finer level

dl+1
k, j ≥ 2εl = εl+1.

Even if this is not actually the case at the current time step, we foresee the possible formation
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of high gradients or discontinuities at the next time step by including all subtrianglesTl+1
k, j

in G̃n+1.

We summarize the definition of̃Gn+1 in the following algorithm.

ALGORITHM 4. The gridG̃n+1.

• Initialize G̃n+1=Ä0

• For l = L − 1↘ 0
—For k= 1, Nl

∗ If |dl
k| ≥ εl then addTl

j to G̃n+1 for all Tl
j that share a vertices withTl

k .
∗ If |dl

k| ≥8εl then addTl+1
k, j to G̃n+1.

It should be well understood that this heuristic construction—which gives excellent
practical results—is not rigorously proved to yield the desired (20). A deeper analysis
of more sophisticated constructions ofG̃n+1 that would fulfill this property is currently
under investigation. In particular, it appears that an important requirement is that this set
has a certaintree structurein the sense that ifTl

k ∈ G̃n+1 thenTl ′
k′ ∈ G̃n+1 wheneverTl

k ⊂ Tl ′
k′ .

This structure is also crucial toward fully adaptive computations, since it allows a one-to-
one correspondence between the truncated multiscale decomposition ofūL ,n and its cell
averages on an adaptive triangulation associated to the setG̃n+1.

4. TESTS

In this section we show results that validate the multiresolution scheme coupled with
the ENO scheme (see Appendix 2). We use the Heun scheme instead of the explicit Euler
scheme to ensure second order accuracy in time as well as in space.

We also illustrate the numerical efficiency by studying simultaneously the error and the
computing time for different compression rates.

The first example is the periodic function used as a benchmark in [10]. The equation is
assumed to be linear with constant velocitya. Two different directions are tested:a= (1, 0)
anda= (0.7, 0.7). The initial condition isu0(x, y)= sin(2πx) sin(2πy) and the domainÄ
is the unit square [0, 1]× [0, 1]. The rate of convergence of the method is determined from
the error, defined by theL1-norm of the difference between the numerical and the exact
solution. This numerical error is represented as a function of the space discretization steph.
The evaluation after one quarter of a period (respectively one period) is displayed in Fig. 2

FIG. 2. L1 error for the first (+) and the second (×) order schemes at timet = 0.25. Initial condition
u0(x, y)= sin(2πx) sin(2πy).
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FIG. 3. L1 error for the first (+) and second (×) order schemes at timet = 1. Initial conditionu0(x, y)=
sin(2πx) sin(2πy).

(resp. Fig. 3). On each graph the two curves correspond to the first order flux and the ENO
one; see Appendix 2. The straight lines show the best fitting numerical orders. The four
points correspond to different space discretizationh=√21with1 the area of any triangle
of the regular finest grid. The finest discretizationh= 0.0125 is obtained with five levels in
the multiresolution, (with 12,800 triangles on the finest level). The CFL number1t/h is
fixed to 0.1. For each discretization two computations are done, one directly on the finest
grid without multiresolution analysis and the other with the multiresolution analysis and the
tree algorithm (3) for the flux computations. The goal here is to test the flux computation
accuracy; therefore the thresholding in the multiresolution analysis is not activated. Both
computations give exactly the same results which are summarized in Table I. Orders of
accuracy comparable to those in the cited reference are obtained.

We turn now to our real purpose, which is to use multiresolution in order to solve PDEs
with discontinuous solutions. As a typical example we choose the case of a translating
disk. The initial condition isu0(x, y)= 1 if (x− 0.5)2+ (y− 0.5)2< r 2 andu0(x, y)= 0
elsewhere withr = 0.25. The velocity isa= (1, 1) and periodic boundary conditions are
set on the unit square. Three different types of computations are performed using four,
five, or six levels of resolution. The coarsest mesh is composed of 50 triangles—51,200
on the sixth level. The CFL condition is unchanged,1t/h= 0.1, and we translated the
disk over one period (t = 1). For each discretization a computation without multiresolution
is performed on the finest level using the compressive ENO flux evaluation. To illustrate
the multiresolution representation we plot the superposition of the meshes with a different
shade of grey for each level. Only triangles where the fluxes are computed by integration
are represented. Figures 4 and 5 correspond to computations done using five and six levels

TABLE I

Numerical Orders of Convergence Initial Condition sin(2πx) sin(2πy)

Fig. Time Flux direction 1st order (num) 2nd order (num)

1 (left) 0.25 (1, 0) 0.95 1.55
1 (right) 0.25 (0.7, 0.7) 0.9 1.95
2 (left) 1 (1, 0) 0.9 1.45
2 (right) 1 (0.7, 0.7) 0.7 1.9
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FIG. 4. Mesh for 5 levels after one period. Modified ENO scheme.

with a toleranceε= 25· 10−5 on the coarse grid. We see that the fine grid is used only in the
immediate neighborhood of the discontinuity and actually allows us to detect its location
quite precisely. This feature accentuates itself as the number of grid levels increases. The
computations are then compared in terms of accuracy and speed.

In Fig. 6, theL1-error between the exact and computed solutions is displayed as a function
of h for tolerance levelsε= 25· 10−5 andε= 5 · 10−4. In the caseε= 0 the multiresolution
is not used and all the fluxes are computed by integral evaluations on the finest grid. The
three discretizationsh= 0.025, 0.0125, and 0.00625 correspond to computations done using
four, five, and six levels starting from the same coarse grid of fifty triangles. This figure
indicates that the multiresolution does not deteriorate the rate of convergence—even though
at a given discretization the error increases with the toleranceε.

On Fig. 7, we compare simultaneously the CPU time and the precision as a function of the
tolerance levelε. The computations are done using six levels of multiresolution. As expected,
the accuracy is roughly an affine function ofε, since it includes the basic error forε= 0 and
the truncation error which depends linearly ofε. Forε small enough the error thus remains
close to the error of the initial finite volume scheme. Note that the CPU gain in increasing
ε is limited and that for a value such asε= 0.0002, we already have reached the maximal
reduction (roughly a factor of two) for an increase of the error only by seven percent.
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FIG. 5. Mesh for 6 levels after one period. Modified ENO scheme.

An important factor in the CPU time reduction is the alternative of a centered (less
expensive) scheme for some flux evaluations, namely, thef̄ L

k ’s located in the regularity
zone of the solution. Many such̄f L

k ’s are encountered in Step 1 of the tree algorithm (3).
For thesef̄ L

k ’s we use a centered scheme (Lax–Wendroff) instead of the more costly ENO

FIG. 6. L1 error as a function of the discretizationh for different tolerances:ε= 0(+) , ε= 25· 10−5 (×),
andε= 5 · 10−4 (∗) Discontinuous initial condition.
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FIG. 7. CPU time andL1 error as a function of the toleranceε. Discretizationh= 0.00625. Discontinuous
initial condition.

reconstruction: Eq. (31) is replaced by

f̄ L
k, j '

1

2
(a · nk)

{
(ũk + ũ j )−1t

(
a

dx
+ b

dy

)
(ũk − ũ j )

}
, (22)

where(dx, dy) are the coordinates of the vector joining the centroids of the trianglesT L
k

andT L
j . For a computation of five levels, for instance, the CPU time required for a full

computation on the finest grid with the compressive ENO scheme is 2149 s. If the multires-
olution reconstruction is performed with a toleranceε= 25· 10−5 it falls down to 1437 s.
Eventually, if the centered Lax–Wendroff scheme is used on the fine grid wherever the
solution is smooth enough, the CPU time is again reduced to 1007 s without affecting the
accuracy.

CONCLUSIONS

This work describes the coupling of multiresolution on triangles with finite volume
schemes. The multiresolution analysis is used in order to apply ENO reconstruction only
when this costly procedure is really needed. The numerical simulations show a significant
CPU reduction. They are also—to our knowledge—the first experiments with several nested
triangular grids. We have in mind several possible extensions of this work, first of all to
apply this method to non-linear equations with possibly non-convex fluxes. In that case
not only the reconstruction but the numerical flux function itself becomes costly. Quadratic
reconstructions are also desirable in order to improve the accuracy of the scheme. The main
goal remains however to solve the equations, not on the finest grid, but on an adaptive grid
composed of triangles from various gridsÄl , which should allow much more significant
CPU reductions. An intermediate study is currently performed in order to handle properly
the difficulties already encountered in one dimension, in particular the accurate computation
of the flux on a coarse level without knowing the solution on the fine grid but on the other
hand using the fact that the details are negligible.

APPENDIX 1: PREDICTION OPERATOR

In this section we describe how the scheme (7), (8), (9) can be improved and in particular
how the selected reconstruction (12) is obtained.
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A one parameter subdivision scheme.We replace the definition of̃u0,3 as given by (11)
by the more general formula

ūl+1
0,3 = a

(
ūl

1+ ūl
2

)+ būl
3+ cūl

0. (23)

We now show that the constantsa, b, andc can be chosen to ensure the stability and provide
the same accuracy as the initial scheme (9). To this effect the formula (23) should be exact
for polynomials of degree one. For such a polynomialp(x, y) we have

ūl+1
0,3 = p

(
xl+1

0,3 , yl+1
0,3

) = a
(

p
(
xl

1, yl
1

)+ p
(
xl

2, yl
2

))+ bp
(
xl

3, yl
3

)+ cp
(
xl

0, yl
0

)
,

which is verified for allp∈51 if and only if b=a− 1/2 andc= 3/2− 3a. The scheme
then becomes

ūl+1
0,3 = a

(
ūl

1+ ūl
2

)+ (a− 1

2

)
ūl

3+ 3

(
1

2
− a

)
ūl

0, (24)

and similarly

ūl+1
0,2 = a

(
ūl

1+ ūl
3

)+ (a− 1

2

)
ūl

2+ 3

(
1

2
− a

)
ūl

0,

and

ūl+1
0,1 = a

(
ūl

2+ ūl
3

)+ (a− 1

2

)
ūl

1+ 3

(
1

2
− a

)
ūl

0.

The central subdivision̄ul+1
0,0 is determined so as to satisfy (4)

ūl+1
0,0 =

(
9a− 1

2

)
ūl

0−
(

3a− 1

2

)(
ūl

1+ ūl
2+ ūl

3

)
. (25)

Fora= 1/2, one obtains the original non-stable scheme (7), (8), (9). We shall now see that
other values of a improve the stability in the sense that the limit functions are not only
integrable but also H¨older continuous.

Convergence. There exists now many different techniques to analyze the convergence
of subdivision algorithms, as well as the smoothness of the limit function. Some of these
techniques make use of Fourier analysis, while other directly operate in the “physical”
domain (see, e.g., [4, 11] for substantial review on these different approaches). Here we
are specifically interested in evaluating the H¨older smoothness. In this context, a standard
analysis method consists of deriving an auxiliary subdivision algorithm which maps the
(infinite) vectorDl of finite differences between averages on adjacent triangles at levell to
the same finite difference vectorDl+1 at levell + 1. Convergence and H¨older smoothness
of the limit follow by proving a contraction property on this auxiliary scheme.

More precisely, convergence to a continuous limit holds if liml→∞‖Dl‖l∞ = 0 when
starting from the difference vectorD0 associated to the fundamental data with average 1
on a single triangle ofÄ0 and 0 elsewhere (or equivalently from the difference vectorD0
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FIG. 8. The two cases for the differences.

associated to any bounded sequence of averages onÄ0). In addition, if one can prove an
estimate of the type

‖Dl‖l∞ ≤ Cρl (26)

for someρ ∈ [1/2, 1[, then the limit functions have H¨older smoothnessCα with α=− log(ρ)
log(2) .

A simple computation from the above formulas defining the subdivision for the average
shows that the subdivision for the differences can be described by two rules, corresponding
to the two cases depicted in Fig. 8 (note that each difference is associated to an edgeand
an orientation in the normal direction): for a differenceDl+1

1 at levell + 1 associated to an
edge which does not belong to an edge of the coarser levell , we have

Dl+1
1 = (4a− 1)Dl

1+ (4a− 1/2)
(
Dl

2+ Dl
3

)
, (27)

while for a differenceDl+1
2 at levell + 1 associated to an edge which belongs to an edge of

the coarser levell , we have

Dl+1
2 = (2a− 1)Dl

2+ a
(
Dl

1+ Dl
4

)+ (a− 1/2)
(
Dl

3+ Dl
5

)
. (28)

Therefore, if we denote bySD the corresponding operator, we see that it acts boundedly
on l∞ with norm

‖SD‖ = Max{|4a− 1| + 2|4a− 1/2|; |2a− 1| + 2|a| + 2|a− 1/2|}.

It can easily be checked that the right hand side can never be smaller than 1. In turn, we cannot
hope to obtain (26) withρ <1 through a rough estimate such as‖Dl‖l∞ ≤‖SD‖l‖D0‖l∞ .

In order to prove (26), we thus need to consider higher power ofSD: if ‖Sn
D‖< 1 for

somen> 0, it is clear that (26) holds withρ :=‖Sn
D‖1/n.

The operatorsSn
D are also described by a finite number of rules, relatingDl to Dl+n,

which however become more numerous and complicated asn increases. With the help of
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a computer, we were able to compute these rules and thus thel∞ norms‖Sn
D‖ for powers

up to n= 8. In particular, we find that‖S7
D‖< 1 for 0.16≤a≤ 0.21 and‖S8

D‖< 1 for
0.14≤a≤ 0.23.

Therefore, we are ensured that the limit function has some positive H¨older smoothness
for values ofa in the interval [0.14, 0.23]. It is of course possible to evaluate this smoothness
by α=− log(‖S8

D‖)/8 log 2 since we haveρ ≤‖S8
D‖1/8. However, direct evaluation of the

differences‖Dl‖l∞ indicates that this is a pessimistic estimate in the sense thatρ could be
actually much smaller than‖S8

D‖1/8.
In fact, it is even possible that (26) holds with someρ strictly smaller than the spectral

radius ofSD on l∞ (i.e., limn→∞‖Sn
D‖1/n) for the following reason: the differences cannot

be any arbitrary sequence indexed by the edges since they need to satisfy compatibility
relations (the differences over all the edges connected to one point sum up to zero when
conveniently oriented). Therefore a sharper estimate forρ should be the spectral radius of
SD on the subspace ofl∞ defined by these conditions.

At a more empirical level, we have directly evaluated the contraction factor‖Dl+1‖l∞/
‖Dl‖l∞ which tends to stabilize forl ≥ 5. We find that this experimental contraction factor
ρexp is strictly less than 1 for 0.13≤a< 0.25 and is close to its minimal valueρ∼ 0.7
for 0.16≤a≤ 0.21. We can therefore conjecture that the limit function is continuous for
0.13≤a< 0.25 and has H¨older smoothnessα∼ 0.5 for 0.16≤a≤ 0.21.

In another direction, one can identify as follows an interval fora out of which no Hölder
smoothness can be expected. Consider a triangle ofÄl+1 which is a central subtriangle of a
triangle inÄl (e.g.,Tl+1

0,0 on Fig. 1.) We see from (27) that the three differences associated
to its edges only depend on the three differences associated to the edge of the triangle of
Äl which contains it. With an outward orientation of the normal, the matrix describing this
dependence is given by

 4a− 1 4a− 1/2 4a− 1/2

4a− 1/2 4a− 1 4a− 1/2

4a− 1/2 4a− 1/2 4a− 1

. (29)

Some information on the smoothness of the limit function can be derived from the spec-
tral properties of the above matrix: the eigenvalues of this matrix areλ1= λ2=− 1

2 and
λ3= 12a− 2, so that ifa does not belong to ]1/12, 1/4[, we can find an initial vector
D0 (which does satisfy the compatibility conditions) such that‖Dl‖l∞ does not tend to
zero.

Optimal parameter. We finally test the approximation properties of our subdivision
scheme for different functionsu and different values of the parametera. We start from the
mean values of the function at the coarse gridÄ0 (256 triangles). Iterating the subdivision
scheme from this coarse data produces a limit functionul which can be viewed as the
projection ofu onto the space spanned by the dual scaling functions. A practical way to
select a good value ofa is by optimizing the error‖u− ul‖ in some prescribed norm. In
practice, we can only do a finite number of subdivision steps. After three iterations, we
compute the errors between the result and the exact mean values ofu on this finer grid,
which amounts to evaluating the averages oful − u on the finest gridÄ3. The results are
presented in theL1 norm (the behavior with respect toa was observed to be similar in the
L2 andL∞ norm).



MULTIRESOLUTION SCHEMES ON TRIANGLES 283

FIG. 9. L1 norm of the error, a regular function.

• For a smooth functionu(x, y)= sin(2πx) sin(2πy), the results are shown in
Fig. 9.
• For a discontinuous function,u(x, y)= 1 on a disc centered at (0.5, 0.5), with radius

0.2 andu(x, y)= 0 elsewhere, the results are shown in Fig. 10.

FIG. 10. L1 norm of the error, a discontinuous function.
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These two figures justify our choice for the value of the parametera= 1/6 which be-
longs to the interval ]0.16, 0.21[ of highest smoothness and leads to a particularly simple
scheme, 

ūl+1
0,0 = ūl

0

ūl+1
0,1 = ūl

0+
(
ūl

2+ ūl
3− 2ūl

1

)/
6

ūl+1
0,2 = ūl

0+
(
ūl

1+ ūl
3− 2ūl

2

)/
6

ūl+1
0,3 = ūl

0+
(
ūl

1+ ūl
2− 2ūl

3

)/
6.

(30)

The above analysis is tied to the use of fully uniform triangulations. In practice, the
triangulation can be thought of as uniform after a certain number of subdivision steps, except
near the exceptional points and edges corresponding to the coarsest mesh. A more elaborate
(yet feasible) analysis can be performed in order to analyze the smoothness of the dual
functions in these regions (in the uniform regions, smoothness is determined by the previous
analysis). Note that the prediction scheme needs anyway to be modified near the exceptional
points and edges in order to ensure polynomial exactness. A natural generalization of the
optimal scheme (with parametera= 1/6) seems to be by imposinḡul+1

0,0 = ūl
0 for the central

triangle and computing the coefficients of the three remaining prediction rules from the
constraints of polynomial exactness up to order 1 and conservation of the average.

APPENDIX 2: FINITE VOLUME SCHEME

We now detail two steps in the finite volume scheme, namely the design of the recon-
struction operatorR and the computations of the flux across the edges ofÄL .

Computation of the flux onÄL . Let f L
k, j = (1/|0L

k, j |)
∫
0L

k, j
f(ϕ(σ )) · nk dσ be the flux to

be computed andF(u, v,n) a numerical flux, i.e.,F is a Lipschitz continuous function,
satisfying the consistency conditionF(w,w,n)= f(w) · n. We used a two-point monotone
flux, F(uk, u j , nk, j )= F(uk, u j ), where the functionF(u, v) is non-decreasing inu and
non-increasing inv (consult [10]). An approximation of the exact flux is then given by

f L
k, j ' f̄ L

k, j := F(ũk, ũ j ),

whereũk andũ j are two values ofu chosen from each side of the edge0L
k, j .

We suppose Eq. (1) to be linear

∂t u+ a∂xu+ b∂yu = 0

with convection terma= (a, b). For such linear equations, we apply an upwind flux

F(u, v) = F+(u)+ F−(v),

where

F+(u) = max(a · n, 0)u
F−(u) = min(a · n, 0)u
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to get the approximation

f L
k, j ' f̄ L

k, j := F+(ũk)+ F−(ũ j ). (31)

Design of the reconstructionR. In the previous numerical flux̃uk and ũ j denote ap-
proximations of the solution on the edges0L

k, j . Since this solution is known by its mean
values on the triangles on both sides of0L

k, j , a reconstruction algorithm is required to re-
cover accurate point value approximations. This reconstruction must satisfy the following
conditions [5].

• Piecewise polynomial.Restricted to each triangleT,RT = R|T is a polynomial of
degreer − 1.
• Approximation.Whereverω is smooth,R(.; w̄)is anr -order approximation ofw:

R(x; w̄)=w(x)+ hr , whereh is the size of the triangles.
• Conservation of the averages.A(Tk)R(.; w̄)= w̄k.

To designRT , one selects a set of triangles in the neighborhood of the current triangle
T . The number of triangles in this stencil must be large enough in order to determine the
coefficients of the polynomialRT by imposingA(Tk)R(.; w̄)= w̄k for each triangleTk in
the stencil. These conditions can also be imposed in a least squares sense. This adaptive-
stencil strategy seems to ensure the stability and the convergence of the scheme. We refer to
[5] for such reconstruction on triangular meshes. We test here the reconstructions proposed
in [10]:

Flux 1. The simplest choice is̃uk= ūL
k , ũ j = ūL

j . This reconstruction, by a constant
function, leads to a first order accurate scheme as shown in Section 4.

Flux 2. A more accurate flux consists in takingũk to be the value of aN-degree
polynomial pk associated toT L

k at the mid-point of the edge under consideration. For
N= 1, pk is one of the three polynomials having the same average thanu on T L

k and two
neighbor triangles. A limiting procedure is applied: from the three possible candidatespk,
we select thepk for which ‖∇ pk‖2 is maximal with the restriction that neither overshoot
nor undershoot occurs at any of the three triangle sides; see [10] for details.
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